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Series expansions of the percolation probability on the
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Department of Mathematics, University of Melbourne, Parkville, Victoria 3052, Australia

Received 15 September 1995

Abstract. We have derived long-series expansions of the percolation probability for site, bond
and site—bond percolation on the directed triangular lattice. For the bond problem we have
extended the series from order 12 to 51 and for the site problem from order 12 to 35. For the
site—bond problem, which has not been studied before, we have derived the series to order 32.
Our estimates of the critical exponefitare in full agreement with results for similar problems

on the square lattice, confirming expectations of universality. For the critical probability and
exponent we find in the site casg; = 0.404 352 &:0.000 0010 ang8 = 0.276 45+ 0.000 10;

in the bond caseg, = 0.521 98+ 0.000 01 and8 = 0.2769+0.0010; and in the site—bond case:

g = 0.264 173+ 0.000003 and8 = 0.2766+ 0.0003. In addition we have obtained accurate
estimates for the critical amplitudes. In all cases we find that the leading correction to scaling
term is analytic, i.e. the confluent exponext= 1.

1. Introduction

In an earlier paper (Jensen and Guttmann 1995) we reported on the derivation and analysis
of long series for the percolation probability of site and bond percolation on the directed
square and hexagonal lattices. In this paper we extend this work to site, bond and site—
bond percolation on the directed triangular lattice. We refer to our earlier paper for a more
general introduction to directed percolation and its role in the modelling of physical systems.
In directedsite percolation each site is either present (with probabitijyor absent (with
probability ¢ = 1 — p) independent of all other sites on the lattice. Similarly bamd
percolation each bond is absent or present independently of other bonds. Finsilig—n
bondpercolation both sites and bonds may be absent or present with equal probability, but
again with no dependency on any other sites or bonds. Two sites in the various models
are connected if one can find a path, respecting the directions indicated in figure 1, through
occupied sites, bonds or sitesd bonds, respectively, from one to the other. When

is smaller than a critical valug, all clusters of connected sites remain finite, while for

p = p. there is an infinite cluster spanning the lattice in the preferred direction. The order
parameter of the system is the percolation probab#ity) that a given site belongs to the
infinite cluster. This quantity is strictly zero whem < p. and changes continuously at

pe. For p > p. the behaviour ofP (p) in the vicinity of p. may be described by a critical
exponents,

P(p) « (p — po)’ p— pl. 1)
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The bond problem was originally studied by Blease (1977) who calculated a series to
12th order. For the site problem De’Bell and Essam (1983) derived the series to 12th order.
The site—bond problem has, at least to our knowledge, never been studied before. Our main
motivation for doing so in this paper is to obtain further independent estimates of the critical
exponents. Using the finite-lattice method and the extrapolation technique of Baxter and
Guttmann (1988) we have extended the series for the bond problem to order 51, for the site
problem to order 35 and derived the series for the site—bond problem to order 32. The site
and bond problems have also been studied by Estaah(1986, 1988), who derived series
expansions for moments of the pair connectedness.

2. The finite-lattice method

We wish to derive a series expansion for the percolation probability on the directed triangular
lattice oriented as in figure 1. In this figure we have numbered the various levels or rows
of the lattice according to which sites can be reached by a path of minimum Iahgtih
starting at the origin O. In other words all sites in thiéh row can be reached iN — 1 steps

but not in N — 2 steps. Note that a path going through a given site can only reach the part
of the lattice shown in figure 1 below the origin O. This suggests that one should look at the
following finite-lattice approximation t& (¢), namely the probability’y (¢) that the origin

is connected to at least one site in tN¢h row. Since we are in the high-density region
we have chosen to use the expansion paramgtether thanp. Py(g) is a polynomial

with integer coefficients and a maximal order determined by the total number of sites and/or
bonds on the finite lattice.

Figure 1. The directed triangular lattice with orientation given by the arrows. The rows are
labelled according to the text.

By the method used for the square lattice problems (Bousq@tM1995) one can
prove, mutatis mutandis that the polynomialsPy(g) converge toP(g). Indeed we
may considerP(q) = limy_ . Py(g) to be a more precise definition of the percolation
probability. More importantly, however, from a series expansion point of view, for the site
and site—bond problems the first+ 1 coefficients of the polynomialgy (q) are identical
to those of P(g). In the case of bond percolation the agreement extends through the first
2N + 1 coefficients.
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2.1. Specification of the models

To calculate the finite-lattice percolation probabilRy (¢) we associate a state with each
site, such that; = 1 if site j is connected to the&vth row ando; = —1 otherwise. We
shall often write4-/— for simplicity. Let/, ¢ andr denote the sites connected to a site
¢t from the row above, as in figure 1. We then define the weight fundiian, |0y, o, 0,)

as the probability that the top siteis in stateo;, given that the lower siteks ¢ andr are

in stateso;, o. ando,, respectively. As for the square lattice (Bidaux and Forgacs 1984,
Baxter and Guttmann 1988) we then have

Py(g) =) _[]Wloi oc. 07) @)
{o} ¢

where the product is over all sitesof the lattice above thé&/th row. The sum is over all
values+1 of eacho,, other than the topmost spin which always takes the valugl. The
spins in theNth row are fixed at+-1, and Py (g) is calculated as the sum over all possible
configurations of the probability of each individual configuration.

The weight functionsW are calculated as follows. ObviouslW (—|oy, 0., 0,) =
1 — W(+lo;, 00,0,). The remaining weights are easily calculated by considering the
possible arrangements of states and sites and/or bowds:|—, —, —) = 0 because the
top site is connected to th&¥'th row if and only if at least one of its neighbours below
is connected to th&vth row. All the remaining weights for theite problem equal 1 ¢
because the top site has to be occupied in order to be connected féthheow. Let
us next look at the remainingond weights. W5 (+|+, +,4) = 1 — ¢° because the
only bond configuratiomot allowed is all three bonds absent, which has probabijity
WB(H+, +, ) = WB(H|+, -, +) = WB(+|—, +,+) = 1 — ¢? because the bond to
the — state can be either present or absent (probability 1) while among the remaining
bonds only the configuration with both bonds absent (probakjfjyis forbidden. Finally,
WB(+|+,—, —) = WB(+|—, +,—) = WB(+|-, -, +) = 1 — g because the bond to
the + state has to be present, which happens with probahility 1 — ¢, while the
other bonds can be either present or absent. Forsitee-bondproblem we find that
WSB (4|07, 0, 0,) = (L—q)WB(+]|oy, 0., 0,) because if the top state 4s1 the top site has
to be present.

2.2. Series-expansion algorithm

Computer algorithms for the calculation &f(¢) are readily found. These are basically
implementations of the transfer matrix technique. The general features of these algorithms
were described in our earlier paper (Jensen and Guttmann 1995), to which we refer for
further details. The sum over configurations is performed by moving a boundary line through
the lattice. For each configuration along the boundary line one maintains a (truncated)
polynomial which equals the sum of the product of weights over all possible states on
the side of the boundary already traversed. The boundary is moved through the lattice
one site at a time. The calculation & (¢) by this method is limited by memory, since
one needs storage for¥2boundary configurations. However, as was the case with the
square lattice, this problem can be circumvented by introducing a cut into the lattice. For
each fixed configuration of states on this cut one evaluates the lattice®Sim and gets
Py(q) = Y PS(g) as the sum over all configurations of the cut. By placing the cut
appropriately, the growth in memory requirements can be reducet/fo 2

In figure 2 we show the triangular lattice with a cut marked by full circles. In the
algorithm the cut is used as a pivot line by the boundary line which traverse the lattice. We
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Figure 2. The directed triangular lattice with orientation given by the arrows. The sites with
fixed states along the pivot line are marked by full circles. The open circles mark one particular
position of the boundary line during the traversing of the lattice.

start by building up the first row at the base CL of the lattice. We then build up the part of
the lattice above the cut from row CL to row ELNext the boundary line expands along
the line-piece ES until it reach the position ESand the last site (at’l) is flipped to the
other site of the top-most triangle (after this the boundary line is in the position marked by
the open circles). Then we work our way down the right-hand side of the lattice past R to
position ESB. Finally the boundary line is moved down along the line-piece SEC after which
the whole lattice has been build up. This process is then repeated for each configuration of
the cut. Since the calculations for different cut-configurations are independent of each other
this algorithm is perfectly suited to take full advantage of massively parallel computers.
Using this algorithm we calculate@®y (¢) for N < 23 for the bond and site—bond
problems. The integer coefficients @fy(g) become very large so the calculation was
performed using modular arithmetic (see, for example, Knuth 1969). Each rumwti23,
using a different moduli, took approximately 70 hours for the bond problem and 55 hours
for the site—bond using 50 nodes on an Intel Paragon. For the site problem the weights only
depend on whether or not there are arg among the neighbours of the top-most site. As
was the case for the square site problem this may be used to sum over many configurations
of the cut simultaneously (see Jensen and Guttmann 1995 for further details). This allowed
us to calculatePy(q) for N < 25. Each run forN = 25 took about 85 hours using 50
nodes.

3. Extrapolation of the series

As mentioned, the coefficients of the polynomidts(q) = >, -oan.ng™ Will generally

agree with those of the series fBi(q) = ), .oang™ up to some order), determined by

N, but depending on the specific problem. In the case of directed bond percolation on the
square lattice Baxter and Guttmann (1988) found that the serig®(fprcould be extended
significantly by determining correction terms Ry (q). Let us look at

Py — Pys1=4q" qudN,r 3)

r=0
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then we calldy , = ay 5., — ay,1 5., therth correction term. If formulae can be found
for dy , for all r <K then, using the series coefficients Bf (¢), one can extend the series
for P(g) to orderN + K since

.
Ag,, = Ay jisr — E ANtr—mm (4)
m=1

for all » < K. That this method can be very efficient was demonstrated by Baxter and
Guttmann, who identified the first twelve correction terms for the square bond problem, and
used P(q) to extend the series foP(g) to order 41. To really appreciate this advance
one should bear in mind that the time it takes to calcuRj€g) grows exponentially with

N, so a direct calculation correct to the same order would have taken years rather than
days. In the following we will give details of the correction terms for the various directed
percolation problems on the triangular lattice.

3.1. The site problem

For the site problem the coefficients Bf;(¢) agree with those oP(¢) to orderN. In this

case the first correction term is very simpledaso = 2 for N > 2, i.e. the first correction
term is simply a constant. For the second correction tégm we find the following

sequence:

0,0,3,183250,7298,....
It is thus immediately clear that
dy1=2N? for N >3. (5)

Note that for convenience we assume that the sequence startevfreri. And indeed
we find that forN > r + 1, dy, can be expressed as a polynomialNnof order 2. We
have been able to calculate these polynomials for the the first 10 correction terms. It turns
out that it is useful to pull out a factor/tr!(r + 1)!) and express the correction terms as

1 2r
Ay, = —— S Nk, 6
N, r!(r+1)!;cr (©)

This ensures that the coefficients in the extrapolation formulae are integers. We have
listed these coefficients in table 1.

Obviously since these formulae are correct fér> r + 1 and we have calculated
Py(q) for N < 25 we did not have enough terms in the correction sequences to calculate
all the coefficients in these polynomials for the largest values.oHowever, from the
table of coefficients, it is immediately clear theft = 2+1. And, in general, we found that
cZ—m/2+1 is a polynomial inr of order 2n

5 or+1 2m  x
A kZ(:)bmr 7

where the prefactor has been chosen so as to make the leading coefficients particularly
simple. In table 2 we have listed the coefficienfsfor the first six polynomials.

This time we note thab2" = 3". And indeed as before we find thaf"//3" is a
polynomial inm of order 2j. In particular, we have

b2t = 3"m(17/27 + 10/27m)

m
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Table 1. The coefficientsX in the extrapolation formulae (6) for the site problem.

k
cy

k/r 1 2 3 4 5 6 7 8 9
0 0 24 0  5760-345600—65 318 400—15850 598 400-2 984 789 606 400-539 895 767 040 000
1 0-24 -48-6720 662400 86728320 15417077760 3039204188160 681914 690150400
2 4 4 160-2256-—299136-54 616 32010 042 993 152-2 801 552 624 640-758 646 639 912 960
3 —12-456-5592-155040 29156640 6930400512 1683396497664 492391103938560
4 8 112 6968 262400 3721088-1895857 152 — 641242189 440-236 796 916 234 752
5 —72-4680-211440-13781520 —275292864 183056948928  80349078951936
6 16 1016 117072 9766720 775939360 328884418243 942053553664
7 —288 —35760 —3900960 —484442784 -52810790592 —3002221192320
8 32 6000 1183584 180360704 27746932192 4062978111936
9 —960 —222000 —46002432 —9468263616 —1860005271168
10 64 28000 8946336 2268003232 567526218432
11 —-2880  —1175328 405615168 —128527251840
12 128 112448 55739936 21947992384
13 -8064 —5494272 —2918143872
14 256 406784 301743168
15 —21504 —23270400
16 512 1362432
17 —55296
18 1024
Table 2. The coefficientsp, in the extrapolation formulae (7) for the site problem.
by
k/m 1 2 3 4 5 6
1 3 -31 192 4662 -76800 2752914
2 3 19 -126 -2070Z -969328 —61888160
3 242 —411 7092 1554956 131279834
4 9 459 21954 196840 55417284
5 141 -17022 -1359655 —8193063¢
6 27 4618 860155 105874935
7 684  —236446 -528353887
8 81 33050 14159255
9 3015 -218033§
10 243 196 605
11 12474
12 729
and

b2"2 = 3"m (1015486 — 5137/1458n + 332/243n? + 50/729°) .

So when calculating the extrapolation formulae (6) we first used the sequences for the
correction terms to predict as many polynomials as possible. When we ran out of terms
we then predicted as many of the leading coefficients from (7) as possible. This, in turn,
allowed us to find more extrapolation formulae, which we could use (together with the
formulae forb3" /) to find more of the formulae forZ ~. And so on until the process
stopped with the 10 extrapolation formulae we listed above.
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Table 3. The coefficientsa, in the series expansion of the percolation probabiktyy) for
directed site percolation on the triangular lattice.

n an n ap
0 1 18 —111307
1 0 19 —255236
2 0 20 —590543
3 -1 21 —-1362919
4 -2 22 —3182137
5 -5 23 —7362611
6 —-10 24 —17377129
7 -20 25 —40125851
8 —-41 26 —96106 251
9 -86 27 —219681825

10 —-182 28 —539266 908

11 —-393 29 —-1200140540
12 —-853 30 —3087966932
13 -1887 31 —-6454135923
14 —-4208 32 -18281313306
15 —-9445 33 -33072764132
16 —21350 34 —114854030873
17 —-48612 35 —-145978838818

Using the ten extrapolation formulae aRgh(¢) we extended the series fér(g) through
order 35. The resulting series is listed in table 3.

3.2. The site—bond problem

For the site—bond problem the coefficientsRf(q) agree with those of (¢) to orderN.
In this case the correction terms are very similar to those of the site problem. In particular
we find thatdy o = 12 and in generady , is a polynomial inN of order 2,

2r 2r
dy, = — 5 N cknNk. 8
NG+ 1) ;C’ ®)

We have identified the first nine correction terms for the site—bond problem and have listed
the coefficients:* in the extrapolation formulae in table 4.

From this table it is immediately clear that the coefficient of the leading order
¢ =3 x 4. As in the site case we find thaf " /4"+1 is a polynomial in- of order 2.

2 4+t = k .k
c? :W;blnr 9)

where the prefactor has been chosen so as to make the leading coefficients particularly
simple. In table 5 we have listed the coefficientsfor the first six polynomials.

In this caseb?” = 3"+ andb?"~1 = 3"*+1n(10/27 — 16/27m), which, using the same
procedure as before allowed us to find the first 9 extrapolation formulae. Psefp) we

were thus able to extend the series fofg) through orde 32. The resulting series is listed
in table 6.
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Table 4. The coefficientsX in the extrapolation formulae (8) for the site—bond problem.

k
Cr

k/r 1 2 3 4 5 6 7 8
0 —-22 372 —-6948 228960-15136200 1002796200-148319942400 16196987318400
1 -28 -—-88 —-3570 26052 532350 202151160 54036574200 7153213667040
2 48 66 12222 —-66190 16300863—-1072631628 6187014208828 771509693672
3 —512 —-6804 —464344 —9400240 —-1026322032 27946386678 5012953659 000
4 192 7512 428618 21649545 1760115147 84 256 658 654 6746 690054 058
5 —4800 —249952 —23384 790 —1734224880—-194 249017 018—-15249026 722216
6 768 128960 12678024 1443885081 172767873502 22487197814172
7 —34816 —-5084160 —762064416—-111221029556—18388293899920
8 3072 1447680 274270176 53077387932 10265902430946
9 —220160 —72890880 —18083074464 —4339851543328
10 12288 13020672 4539617152 1389887209152
11 —1277952 —833487872 —335678443520
12 49152 101771264 61228145664
13 —6995968 —8139063 296
14 196 608 721256 448
15 —36700160
16 786432

Table 5. The coefficientsh®, in the extrapolation formulae (9) for the site—bond problem.

bk
k/m 1 2 3 4 5
1 -2 -30§ -177 —3187f —179760
2 9 3 198] -3178 —101540
3 —44 252 3962 563989
4 27 498 8568, -153182
5 -342 -11196 -381038
6 81 6733 401698
7 —-1944 -19915%
8 243 57705
9 —9450
10 729

3.3. The bond problem

For the bond problem the coefficients Bf;(¢) agree with those oP (¢) to order 2V. In
this case the first correction term is more complicated. For the first correctiondtggnve
find the following sequence:

1,3,9,27 83, 263 857, ...
which we have identified as
dyo=2Cy—1 (20)

whereCy = (2N)!/((N+1)!N!") are the Catalan numbers, which also occur in the correction
terms for the square bond problem. In general we find that fgr4 the correction terms
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Table 6. The coefficientsa, in the series expansion of the percolation probabiktyy) for
directed site—bond percolation on the triangular lattice.

n an n ay
0 1 17 —86564874
1 0 18 —134834422
2 0 19 —1031059888
3 -8 20 —1842094 489
4 -4 21 —12140138712
5 -70 22 —27303542028
6 -23 23 —133912895 295
7 —640 24 —447 687526 744
8 —-205 25 —1274069580 864
9 —-6272 26 —7565668 332198
10 —2941 27 —-10362711920204
11 64028 28 —-113855530577726
12 —47391 29 -131148651484930

13 —678361 30 -1188175707628214
14 714246 31 —4485228802915811
15 —7495405 32 1963925987626925
16 —10059661

Table 7. The coefficients:t, b% andc in the extrapolation formulae (11) for the bond problem.

af b’r‘ c,’f

k/r 1 2 3 4 1 2 3 4 1 2 3 4

0 -1 -8 0 —2304
1 6 0 52 -418 2 -12 90 -748 2 12 108 1152
2 -4 -18 -56 88 2 -14 102 -1 -18 —-176 —1112
3 10 72 288 2 -16 8 234 2392
4 —28 —284 2 —2 —125 —-3526
5 84 36 2344
6 -5 —-820
7 160
8 -14

are given, forN > r — 2, by the formulae

r+1 r 2r
. k N 1 k nrk
dN_r—;arCN+k_1+;b,. <k CN—FW;C},N . (11)

We have listed the coefficients, b* and c¢* of these extrapolation formulae in table 7.

We note that as in the previous problems the leading coefficients are quite simple,
att = (=1)"2C, 41, b, = 2, andc? = —C,.

These five extrapolation formulae amds(g) allowed us to extend the series fBi(g)
through order 51. The resulting series is listed in table 8.

4. Analysis of the series

We expect that the series for the percolation probability behaves like
P(q) ~ Al —q/q)’[L+an(1—q/q0)™ + -] (12)
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Table 8. The coefficientsa, in the series expansion of the percolation probabiktyy) for
directed bond percolation on the triangular lattice.

n an n ay
0 1 26 1587391
1 0 27 —3535398
2 0 28 6108103
3 -1 29 —13373929
4 0 30 23438144
5 -3 3 —50592067
6 1 32 89703467
7 -9 33 —191 306745
8 6 34 342473589
9 -29 35 —722890515
10 27 36 1304446379
11 -99 37 —2729084 244
12 112 38 4957423139
13 —-351 39 —10292 036 449
14 450 40 18800279417
15 -1275 41 —38769381587
16 1782 42 71154482443

17 —-4704 43 145869275322
18 6998 44 268798182822
19 17531 45 548189750051
20 27324 46 1013680069047
21 —-65758 47 —-2057857140279
22 106211 48 3816820768061
23 —247669 49 —7717195669953
24 411291 50 14352037073232
25 —935107 51 —28915083150931

where A is the critical amplitudeA the leading confluent exponent and the represents
higher order correction terms. In the following sections we present the results of our analysis
of the series which include accurate estimates for the critical paramgtes A and A.

For the most part the best results are obtained using Dlo@ Padin some cases just
ordinary Paé) approximants. A comprehensive review of these and other techniques for
series analysis may be found in Guttmann (1989).

41.4.andp

In table 9 we list various Dlog P&dapproximants to the percolation probability series
for directed site percolation on the triangular lattice. The defective approximants, those
for which there is a spurious singularity on the positive real axis closer to the origin than
the physical critical point, are marked with an asterisk. Most higher-order approximants
yield estimates around the valugs = 0.404 3528 and8 = 0.276 45, with very little
spread among the approximants. Opting for a conservative error estimate, it seems
appropriate to estimate that the critical parameters lie in the ragges,0.404 352 810)
and 8 = 0.276 4510), where the figures in parenthesis indicate the estimated error on the
last digits.

The results of the analysis of the series for the bond problem are listed in table 10. In
this case the spread among the various approximants is quite substantial, there appears to
be a marked downward drift in the estimates for bgthand g, and the estimates do not
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Table 9. Dlog Pa& approximants to the percolation series for directed site percolation on the
triangular lattice.

N [N —1,N] [N, N] [N+1,N]

g B qc B qe B

5 0.4040928 0.27451 0.4034610 0.27045 0.404 5236 0.27822
6 0.4038500 0.27301 0.4074251 0.31368 0.4048775 0.28115
7
8

0.4043787 0.27671 0.4043331 0.27633 0.4043677 0.276 64

0.404 3535 0.27651 0.404 3803 0.27676 0.404 3698 0.276 66
9 0.4043615 0.27658 0.404 3636 0.276 60 0.404 3555 0.276 50
10 0.4043623 0.276 58 0.404 3582 0.27654 0.4043574 0.276 53
11 0.4043567 0.27652 0.4043567 0.27652 0.4043576* 0.27653*
12 0.4043567* 0.27652* 0.4043610* 0.27656* 0.4043553 0.276 50
13 0.4043525 0.27644 0.404 3538 0.27647 0.4043580* 0.27653*
14 0.4043529 0.276 45 0.4043526 0.276 45 0.4043528 0.276 45
15 0.4043527 0.27645 0.404 3529 0.27645 0.4043528 0.276 45
16 0.4043528 0.276 45 0.4043528 0.276 45 0.4043528 0.276 45
17 0.4043528 0.27645

Table 10. Dlog Pa@ approximants to the percolation series for directed bond percolation on
the triangular lattice.

N [N —1,N] [N, N] [N +1.N]

qc B qc B qc B

10 0.5222235* 0.28059* 0.5241918* 0.25876* 0.5220853 0.27898
11  0.5221835 0.28019 0.5221078 0.27927 0.5220958 0.27912
12 0.5220691 0.27873 0.5220388 0.27823 0.521836 6 0.27295
13 0.5221336* 0.27948* 0.5219680 0.27678 0.5222844* 0.28038*
14 0.5220278 0.27805 0.5220029 0.27755 0.522008 6 0.27768
15 0.5220076 0.277 65 0.522006 4 0.27763 0.5219973 0.27741
16 0.5220101* 0.27770* 0.5219613 0.27616 0.5219942 0.27733
17 0.5220046 0.27759 0.5219895 0.27720 0.5219959*  0.27738*
18 0.5220774* 0.27768* 0.5218335 0.266 12 0.5219770 0.276 79
19 0.5220382* 0.27801* 0.5219944 0.27735 0.5219876 0.27715
20 0.5219795 0.27687 0.521984 8 0.27706 0.521984 6 0.27705
21 0.5219846 0.27705 0.521984 8 0.27705 0.5219847 0.27705
22 0.5219847 0.27705 0.5219848* 0.27705* 0.5219780 0.27678
23 0.5219837 0.27702 0.5219820 0.276 96 0.5219811 0.27692
24 0.5219767 0.27671 0.5219804 0.276 89 0.5219830* 0.27699*
25 0.5219796 0.276 86 0.5219827* 0.27698*

settle down to definite values. It does, however, seem likely that the true critical parameters
lie within the estimatesy, = 0.521981) and = 0.276910).

The analysis of the series for the site—bond problem yields the results in table 11.
Again we see a downward drift in the estimates for bgthand 8 though the estimates
are somewhat more stable than in the previous case. We estimate that the true critical
parameters lie within the rangeg; = 0.264 1733) and 8 = 0.27663)
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Table 11. Dlog Pae approximants to the percolation series for directed site—bond percolation
on the triangular lattice.

N [N —1,N] [N, N] [N+1,N]

g B qc B qe B

5 0.2639552 0.27456 0.2639775 0.27475 0.264 506 6 0.28077
6 0.2647846 0.28559 0.2640753 0.27556 0.264 1622 0.276 47
7
8

0.2641695 0.276 56 0.2641494 0.27632 0.2641560 0.276 40
0.264 1576 0.27642 0.264 2476 0.27835 0.264 166 7 0.27654
9 0.2641679 0.27655 0.2641739 0.276 65 0.2641747 0.276 66
10 0.2641747 0.276 66 0.2641734* 0.27664* 0.2641757 0.276 68
11 0.2641758 0.27668 0.2641753 0.27667 0.2641754 0.276 67
12 0.2641754 0.276 67 0.2641753 0.27667 0.2641755* 0.27668*
13 0.2641755* 0.27668* 0.2641754* 0.27668* 0.2641755* 0.27668*
14 0.2641755* 0.27668* 0.2641750 0.276 67 0.2641716 0.276 54
15 0.2641724 0.276 58 0.2641735 0.27663 0.2641726 0.276 59
16 0.2641729 0.276 60

4.2. The critical amplitudes

We can estimate the critical amplitudé by evaluating Pa&l approximants taG(g) =

(g — q)P~Y# at g., since it follows from the leading critical behaviour in (12) that
G(g.) ~ A YPq.. This procedure works well but requires knowledge of bgthand

B. As we have just shown, we know both and g very accurately for the triangular site
series. We estimated using values of. between 0.404 352 4 and 0.404 353 4 and values of
B ranging from 0.2764 to 0.2765. For ea@f, B) pair we calculated as the average over
all [N + K, N] Pack approximants wittKk = 0, +£1 and 2V + K > 25. The spread among
the approximants is minimal fay., = 0.4043527,8 = 0.276 45 whereA = 1.581 8835).
Allowing for values ofg. and 8 within the full range we gefi = 1.58194).

For the bond problem we used values;pfrom 0.521 96 to 0.521 21 argifrom 0.2763
to 0.2773 averaging over Padpproximants with ® + K > 40. In this case the spread
is minimal forg. = 0.521985,8 = 0.2767 whereA = 1.485842). Again allowing for a
wider choice of critical parameters we estimate that 1.486(6).

For the site—bond series we restrictgdto lie between 0.264 170 and 0.264 176 ghd
between 0.2763 to 0.2768 using all approximants with-2 K > 25. The minimal spread
occurs aly. = 0.264173,8 = 0.2766 whereA = 1.477 3934). A wider choice forg. and
B leads to the estimata = 1.477(1).

4.3. The confluent exponent
We studied the series using two different methods in order to estimate the value of the

confluent exponent. In the first method, due to Baker and Hunter (1973), one transforms
the functionP,

P(@)=) Ail—q/g)™" =) awq" (13)
i=1 n=0
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into an auxiliary function with simple poles ay1;. We first make the change of variable
g = q.(1—e~%) and find, after multiplying the coefficient gf by k!, the auxiliary function

N oo N .
F@) =YY Ak =) 1_A—u (14)

i=1 k=0 i=1

which has poles at = 1/1; with residue—A; /1;. The great advantage of this method is that
one obtains simultaneous estimates for many critical parameters, nggnghe dominant
singularity), A (the sub-dominant singularity), and the critical amplitudes (the residues at
the singularities), while there is only one parametem the transformation. Unfortunately

this method does not appear to work well for this problem. For the site problem we find
that the transformed series generally yields poor estimateg famd no estimates for the
confluent exponent. For the bond and site—bond problem the situation is somewhat better.
In table 12 we have listed estimates for the critical parameters obtained from varictis Pad
approximants to the Baker-Hunter transformed series, using the values0.521 98 for

the bond series angl. = 0.264 173 for the site—bond series.

Table 12. The critical exponen, confluent exponeni and critical amplitudesA and aa
obtained from [V, M] Pace approximants to the Baker-Hunter transformed series for the bond
and site—bond problems.

N M B A A A X ap
Bond problem

18 19 0.27662 1.48469 1.03897 2.21646
19 20 0.27705 148845 0.97124 1.81301
20 21 0.27678 148604 1.01327 2.04400
21 21 0.28038 149843 0.91120 1.68564
21 22 0.27677 148594 1.01530 2.05671
22 22 0.27673 148582 1.01656 2.06289
22 23 0.27677 1.48594 1.01530 2.05672
23 23  0.27559 148208 1.06473 2.34714
23 24 0.27676 1.48587 1.01657 2.06477
24 25 0.27680 148619 1.01064 2.02788
25 26 0.27679 148615 1.01133 2.03211
Site—bond problem

11 12 0.27788 1.48749 0.89858 1.62193
12 13 0.27651 1.47668 1.01068 2.16827
13 13 0.27342 1.46940 1.11395 3.15155
13 14 0.27651 1.47666 1.01091 2.16997
14 15 0.27661 1.47745 0.99950 2.08954
15 15 0.27828 1.48182 0.96056 1.91013
15 16 0.27659 1.47728 1.00194 2.10641

It should be noted that, obviously, all approximants yield estimates for the critical
parameters. However, we have discarded many approximants from the table because we
believe the results to be spurious. For all the discarded approximants we found that the
amplitude of the confluent term was of order zero and generally the estimaje @s
very far from the expected value. Among the remaining approximants we clearly see that
the favoured value of the confluent exponentAis= 1. We also note that the amplitude
estimates are in full agreement with those of the previous section.
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In the second method, due to Adletr al (1981), one studies Dlog Padpproximants
to the functionF (q), where

F(q) = BP(q) + (g — q)dP(q)/dq .

The logarithmic derivative of'(¢) has a pole at;. with residueg + A. We evaluate
the Dlog Paé approximants for a range of valuesgfand 8. In table 13 we have listed
the estimates forn obtained by averaging over alN N + K] approximants for a few
values ofg with ¢. fixed at the central value of our estimate range. For the site and site—
bond problem we used all approximants witN 2- K > 25 and for the bond problem all
approximants with & + K > 40. This analysis clearly indicates that~ 1 and thus that
there is no sign of any non-analytic corrections to scaling.

Table 13. Estimates for the confluent exponefitfrom the transformation due to Adlet al
(1981) for various values g8 at the critical pointy,.

Site problem Site—bond problem Bond problem
B A B A B A

0.27640 0.98587 0.27630 0.97076 0.27660 1.03471
0.27641 0.99003 0.27635 0.98220 0.27665 1.03079
0.27642 0.99378 0.27640 0.99136 0.27670 1.02537
0.27643 0.99683 0.27645 0.99796 0.27675 1.01846
0.27644 0.99890 0.27650 1.00176 0.27680 1.01013
0.27645 0.99979 0.27655 1.00262 0.27685 1.00042
0.27646  0.99942 0.27660 1.00047 0.27690 0.98941
0.27647 0.99782 0.27665 0.99533 0.27695 0.97716
0.27648 0.99514 0.27670 0.98732 0.27700 0.96377
0.27649 0.99164 0.27675 0.97663 0.27705 0.94934
0.27650 0.98755 0.27680 0.96352 0.27710 0.93394

5. Conclusion

In this paper we have presented extended series for the percolation probability for site, bond
and site—bond percolation on the directed triangular lattice. The analysis of the series leads
to improved estimates for the percolation threshold and the order parameter expotent

table 14 we summarize the critical parameter estimates for the percolation probability for
the three problems on the triangular lattice studied here and the problems studied in our
earlier paper. The estimates fgr= 1— p,. for the triangular bond and site problems are in
excellent agreement with those obtained by Essaal (1986, 1988)g. = 0.404 377) and

qg. = 0.5219757), respectively. The estimates f@r clearly show, as one would expect,

that all the models studied in this and our earlier paper belong to the same universality class.
The unbiased estimates @t derived in the manner described in the previous section, for
the triangular site and square bond cases are in excellent agreement and have small error
bars (we emphasize once more that our error estimates are conservative). This leads us
to believe that an improved estimgfe= 0.276 443) is reasonable. We used this highly
accurate estimate to obtain th&asedestimates in table 14 as follows. First we formed the
series forP(q)~Y# using 8 = 0.276 44. This series has a simple polegatwvhich can be
estimated from ordinary Pédapproximants. By averaging over all [ N+ K] approximants

with K =0, +1 and 2V + K > Nnyn We obtained the biased estimates §pithe error bars

are basically twice the spread among the approximants. We then used the biased estimate for
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q. (with g8 as before) to obtain the biased estimates for the amplitudes using the procedure
described in the previous section. As previously noted (Jensen and Guttmann 1995), there
is no simple rational fraction whose decimal expansion agrees with our estimate of
Given that this model is not conformally invariant, and that the expectation of exponent
rationality is a consequence of conformal invariance, it is perhaps naive to expect otherwise.
It is nevertheless true that there is a widely held—if imprecisely expressed—view that two
dimensional systems should have rational exponents. More precise numerical work such as
the recent estimation of the longitudinal size expongn{Conway and Guttmann 1994)

of directed animals and the present calculation, supports the conclusion that the critical
exponents for these models should not be expected to be simple rational fractions. Finally
note that none of the series show any evidence of non-analytic confluent correction terms.
This provides a hint that the models might be exactly solvable.

Table 14. Estimates of critical parameters for the three problems on the triangular (T) lattice
studied in this paper and for the site and bond problems on the directed square (S) and honeycomb
(H) lattices. See the text for explanation of the biased estimates.

Unbiased estimates Biased estimates
Problem qc B A qc A Nmin
T bond 0.52198(1) 0.2769(10) 1.486(6) 0.521971(5) 1.4841(2) 45
T site 0.4043528(10) 0.276 45(10) 1.5819(5) 0.404 352 3(3) 1.58183(2) 30
T site—bond  0.264173(3) 0.2766(3) 1.477(1) 0.264170(4) 1.4765(3) 25
S bond 0.3552994(10) 0.276 43(10) 1.3292(5) 0.35529955(15) 1.32920(1) 45
S site 0.294515(5) 0.2763(3) 1.425(1) 0.294518(3) 1.42588(4) 30
H bond 0.177143(2) 0.2763(2) 1.106(1) 0.177144(2) 1.1064(3) 30
H site 0.160067(5) 0.2763(4) 1.167(1) 0.160069(2) 1.1680(3) 30
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Appendix A. The first extrapolation formulae

In this appendix we shall calculate the first correction terrifs) for the various problems

we have studied in this paper. In the following we rely heavily on the work of Bousquet-
Mélou (1995) and we shall represent the directed percolation models in terms of directed
animals. By a directed site (bond) animfaive simply understand any finite set of connected
sites (bonds) starting at the origin O in figure 1. Tdrea (or size)|A| of an animal is the
number of sites in the animal and tiperimeter p(A) is the number of unoccupied sites
(bonds) with a nearest neighbour #n The heights of an animal is the last row to which

the animal extends, i.e. there is at least one occupied site ik lo@longing toA but none

in row & + 1. The percolation probability, for the site and site—bond cases, is

P()=1-) ¢"PA-gp"™ (A1)
AcA
where A denotes the set of animals on the lattice. For bond percolation the power of

(1 — ¢) in the above equation ig4|. The difference stems from the assumption that for
site percolation the origin is occupied with probability 1. In analogy with the finite-lattice
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formulation we define subsetdy of A as the set of animals of height less than It
follows that

Py(@)=1- ) ¢"M(@— g™ (A2)
AE.AN
and
Pv(@) — Pyua(@) =1— Y ¢"Pa-g" (A3)
AeAy\ Ay

It should be noted that in the site and site—bond cases the polynoRyi¢}s defined above
are identical to the polynomialBy,1(g) from section 2. From (A3) it is immediately clear
that Py and Py.1 agree up to an orde¥ determined by the animals iy 1\Ay with the
smallest perimeter. In our cas@sis simply proportional taV and the polynomial®y (¢)
therefore have a formal limiP,,(¢) which we identify as the percolation probabiliB(g).
By expanding (A3) one gets a very useful expression for the correction terms

Py(g) = Pusi@) = ¢V Y q'dn, =" > "> > (—1)“"( 'j"_‘kl) (A4)

r=0 r=0 k=0 AEAN.k

where Ay, = {A € Ayi1\ Ay, p(A) =N +k}.

Figure Al. A compact directed site animal (filled circles) on the triangular lattice with perimeter
sites marked by open circles.

The site case

An animal iscompactif the occupied sites in any given row are consecutive, i.e. there are
no holes in the animal (see figure Al). Obviously, removing interior sites from a compact
animal can never reduce the perimeter. Therefore, the animals;in\.Ay with minimal
perimeter are compact. The minimal perimeter of a compact animal of h&ightv + 2.

This is proved by induction oV. It is obviously true forN = 1 and one can easily see
that by adding sites in rowW + 1 to a compact animal of heigh¥ at least one more
perimeter-site is added. We also note that there are at least two animals of Neigjtt
perimeterN + 2, namely a string of sites (one per row) running down either the left or right
hand side of the lattice. This shows thét= N + 2. It is also clear that these two animals
must be the ones that give rise to the first correction tégg = 2. What remains is to
prove that there can be no more animalsdin. ;\.Ay with perimeterN + 2. In order to do
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this we need a unique way of characterizing the perimeter of compact animals of Neight
Introduce linesk; (L) parallel to the right-hand (left-hand) edge starting from kovBince
the animal is compact all sites i intersectingR, and L, are consecutive. The number of
perimeter sites on the left-hand side of the animabjs= maxk, L, N A # @} because the
last occupied site in lind., has an unoccupied neighbour @p. Similar arguments apply
for the number of perimeter sites, on the right-hand side of. Finally, we note that the
only perimeter site not accounted for is the one lying vertically below the last sifg,in
and/orRy. So the perimeter i9(A) = w; + w, + 1. Furthermore, ifA € Ay 1\ Ay then
eitherw; or w, (possibly both) has to equal. The animals with minimal perimetey + 2
are those withw; = 1 or w, = 1, obviously there can be only two such animals, which
completes our proof thaty ¢ = 2.

From equation (A4) we get the second correction term

dyi=I|Ayil— ) (AI-1D (A5)
AeAno
L] L] T k L] L]
L] L] k \ L] L]
* * Figure A2. The two types of compact directed site animals with= 2
a b which contribute to the second correction term.

where|Ay 1] is the number of animals of height with a perimeter of lengtv + 3. From

the characterization of compact animals derived above it follows that the animals in
are those withw; = 2 or w, = 2. Obviously there is the same number of animals in each
case so we can restrict ourselves to the case= 2, w, = N. We are thus looking at
animals restricted to the left-most two linés and L, of the lattice and eithel.; N Ry

or L, N Ry has to be non-empty. The two types of animals are illustrated in figure A2.
If L1 N Ry # 0 (figure A2@)) then the firstV sites of L; are occupied and X £k < N
consecutive sites alonfy, are occupied; thesesites can be placed iN — k + 1 positions.

If LiN Ry = @ (figure A2(¢)) and the firstk sites (1< k < N — 1) of L, are occupied
then the firstj consecutive sites & j < k of L, may be empty. Combining these two
contributions with those frorw, = 2 we find

N N-1
Ay .al = Z(Z(N —k+ D+ Y (k+ 1)) =2N?+2N —2.
k=1 k=1
Since the number of sites in each of the two animalgljng is N, equation (A5) yields
dy1=2N?

thus proving the empirical formula derived previously.
Next we prove the formula fafy ,. From equation (A4) we see that the third correction
term is given by

dyvz=1Aval— Y (AI-D+ Y ('A'z_l). (A6)

A€eAN1 AeAyo
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In this case there are two distinctly different sets of animalsdjn,, namely, compact
animals withw, = 3 as pictured in figure A3, and animals formed from the compact
animals of figure A2 by removing consecutive sites from the second line of occupied sites
leaving at least the first and last sites untouched. One easily sees that cutting such a ‘hole
in these animals is the only way of increasing their perimeter by one site. From the animals
in figure A3 we get the following contributions:

S R T
.
|

S IR

a b Cy C2

Figure A3. The types of compact directed site animals with= 3 which contributes to the
third correction term.

(N—k+Dk—1+1) =N+ IN3+ N2+ IN

e
M»

k=1 [=1

N-1 k N-I
b: 2 3 Y WN—-il-m+1) = N"+3N*—IN? - 3N

k=1 =1 m=1

N-1 k (A7)
Ci: 2) Y U+D=iN+N2-4N

k=1 [=1

N-2 k N—k-1
Coi 2) 3 > m+i+1) =L N+ IN - IN2—EN 42

k=1 1=0 m=1

The animals in figure A3() account for animals wittL; N Ry # @, those of figure A3)
for animals withLy:N Ry = @ andL,N Ry # ¥, and lastly those of figure A3) for animals
whereL; N Ry = ¥ and L, N Ry = #. The contribution in each case is simply all the
possible configurations which leads to an animal of the specified kind. The sums in (A7)
should be self-evident.

The animals in figure A4 with a cut as described above yield the contributions

N k-2
a: 2 Y (N—k+Dk—1-1)=LN — N3~ LN?+ 4N

k=3 I=1

N—1k—-2k—-1-1 (A8)
b: 2 Yo k—1-my=LN* —IN® - LN?+IN.

k=2 =0 m=1

In case &) the piece in the second line has to have at least three gites3] otherwise
one could not cut out a hole of size< k — 2. Thek sites can be placed W — k + 1)
positions and the hole can be cutdin-2—/+ 1=k — [ — 1 places, which leads to the
first sum. In case (b) there can be from 2No— 1 sites in the first line (the sum ovéj
with an overlap of 0< m < k — 2 sites between the first line and the consecutive sites in
the second line extending to théth row. Among the remaining — m sites in the second

’
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line 1< < k—m — 1 are occupied and they can be placed ir m — [ positions, thus
giving us the second sum.
The second term in (A6) is the sum ovet| — 1 of the compact animals in figure A2
and we find the two contributions:
N
a: 2) (N—k+D(N+k—1)=3N°+N*—iN
k=1
N-1 &k
b: ZZZ(N+k—l—1)= AN - VN2
k=1 [=0

(A9)

Finally the last term in (A6) simply stems from the two animals .ty o and their
contribution is

2

By adding the contributions of (A7), (A8) and (A10) while subtracting those of (A9) we
get

dyz=3N*— N®+ IN? — 2N + 2= L (8N* — 12N° + 4AN? — 24N + 24) (A11)

in full agreement with the extrapolation formula listed in table 1, thus concluding the proof
for dy 2.

2<N_1>=N2—3N+2. (A10)

Figure A4. A site-compact directed site—bond animal (full circles and thick bonds) on the
triangular lattice with possible perimeter sites marked by open circles. Some of the perimeter
sites have only one possible incident bond (marked by double lines) and in those cases the bond
can be present (the site is part of the perimeter) or absent (the edge is part of the perimeter).

The site—bond case

From the empirical extrapolation formulae it it clear that the site—bond case is very similar
to the site case and only a few generalizations are necessary. Again we look at compact
animals and the ones we shall csile-compachave the minimal perimeter. A site-compact
animal is one in which, as before, all occupied sites and bonds in a row are consecutive
and in additionall possible bonds to sites with more than one incident edge are present
Figure A4 shows such an animal. Clearly the perimeter of such an animal is equal to the
perimeter of the identicaliteanimal. Thus the animals with minimal perimeter haye= 1

(or w, = 1). Such animals consist of consecutive occupied sites down the left-hand side
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with most of the bonds emanating from these sites present. A few of the bonds can be either
present or absent, namely, the bond from the top site pointing South-East and the bonds
from the last site pointing South-West or South, though in this latter case at least one of the
bonds has to be present. So all in all there are three possible bond configurations from the
last site and two from the top site for a total of six possibilities. Taking into account the
animals withw, = 1 we have proved

dyo=12.

5

RPN

Figure A5. A compact directed bond animal (thick bonds) on the triangular lattice with perimeter
bonds marked by open circles.

The bond case

The first correction term for the bond cask,o = 2Cy — 1, involve the Catalan numbers

Cy which equal the first correction term for the square bond problem (Baxter and Guttmann
1988). Bousquet-Mlou (1995) proved this result by noting that the square bond correction
term arise from compact bond animals of directed hefghtThe first correction term for

the triangular bond problem can be found by generalizing the arguments from the square
bond case. The first correction arise from compact animals constructed as follows. Choose
two pathsw; andw; consisting of bonds pointing only South and South-West starting from
the origin and terminating at the same point on leel The animal obtained by filling in

all bonds betweew; andw, has heightNV and perimeter & + 1. These animals are just

the staircase animalsvhich are enumerated by the Catalan numbers and give rise to the
first square bond correction term. Obviously the set of animals bounded by paths consisting
of South and South-East bonds also contribute to the first correction term. The animal
consisting entirely of south bonds (a line of bonds down the centre of the lattice) is the
only animal included in both sets. The first correction term is exactly due to thgge-2
‘staircase animals’ on the triangular lattice.
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